Walter Bennette
05-01-2014
The Army Reserve can be thought of as a strategic reserve for the Army.
A relatively inexpensive inventory of soldiers ready for action
Question: How many troops should be in the Army Reserve?
Answer:
Question: How many troops should be in the Army Reserve?
Answer: Develop an inventory model to aide in this decision.
Army Reserve:
Whats the right size for the US army?
Newsvendor:
Newsvendor meets Army Reserve
Products lose value after time:
Newsvendor meets Army Reserve
Products lose value after time:
How many old soldiers do you know?
Newsvendor meets Army Reserve
Only one opportunity to place an order:
Newsvendor meets Army Reserve
Only one opportunity to place an order:
Newsvendor meets Army Reserve
Distribution of demand:
Newsvendor meets Army Reserve
Holding cost:
Newsvendor meets Army Reserve
Shortage cost:
Calucluate Shortage Cost
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( S=746,291 \)
\( h=40,728 \ dollars \)
\( p=\frac{hF(S)}{1-F(S)}=Infinity \)
\( Type \ I \ service \ level=100\% \)
\( Type \ II \ service \ level=100\% \)
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( S=746,291 \)
\( h=40,728 \ dollars \)
\( p=\frac{hF(S)}{1-F(S)}=Infinity \)
\( Type \ I \ service \ level=100\% \)
\( Type \ II \ service \ level=100\% \)
Obviously troop levels are not determined with an economic model (or we have the wrong model)
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( S=643,791 \)
\( h=81,456 \ dollars \)
\( p=\frac{hF(S)}{1-F(S)}=7.4 \ trillion \ dollars \)
\( Type \ I \ service \ level \approx 100\% \)
\( Type \ II \ service \ level \approx 100\% \)
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( S=643,791 \)
\( h=81,456 \ dollars \)
\( p=\frac{hF(S)}{1-F(S)}=7.4 \ trillion \ dollars \)
\( Type \ I \ service \ level \approx 100\% \)
\( Type \ II \ service \ level \approx 100\% \)
Refinements must be made to the model
Allow the decision to be made on service level
Type I:
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( \alpha=0.999 \)
\( h=81,456 \ dollars \)
\( S^{\alpha}=F^{-1}\left(\frac {\frac{h\alpha}{(1-\alpha)}}{h+\left(\frac{h\alpha}{(1-\alpha)} \right)} \right) = 594,239 \)
\( Reserve=52,948 \)
Allow the decision to be made on service level
Type I:
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( \alpha=0.999 \)
\( h=81,456 \ dollars \)
\( S^{\alpha}=F^{-1}\left(\frac {\frac{h\alpha}{(1-\alpha)}}{h+\left(\frac{h\alpha}{(1-\alpha)} \right)} \right) = 594,239 \)
\( Reserve=52,948 \)
Demand met for 99.9% of planning periods
Allow the decision to be made on service level
Type II:
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( \beta=0.999 \)
\( h=81,456 \ dollars \)
\( S^{\beta}=\sigma L^{-1}\left(\frac{\mu \left(1-\beta \right)}{\sigma} \right)+\mu=566,820 \)
\( Reserve=25,529 \)
Allow the decision to be made on service level
Type II:
\( \mu=541,291 \)
\( \sigma=17,134 \)
\( \beta=0.999 \)
\( h=81,456 \ dollars \)
\( S^{\beta}=\sigma L^{-1}\left(\frac{\mu \left(1-\beta \right)}{\sigma} \right)+\mu=566,820 \)
\( Reserve=25,529 \)
99.9% of demand met
Walter Bennette
bennette@iastate.edu
bennette.github.io