Walter Bennette
12 - 06 - 2013
Joe hopes he can earn more money by identifying the correct customers to turn away
What needs to be done?
\( max \sum\limits_{i = 1}^{m} \sum\limits_{j = 1}^{n} \space w_{ij} x_{ij} \)
\( s.t \)\( \sum\limits_{i\space= \space 1}^{m} x_{ij} \leq 1 \space\space \space \space j = 1, ... , n \)
\( \sum\limits_{j\space \in \space J_t} x_{ij} \leq 1 \space\space \space i = 1, ... , m, \space\space \space t = 1, ..., H \)
\( x_{ij} \in \{0, 1\} \)
This is an integer program, it can be solved through branch and bound!
Lets give it a go!
Joe has three cars
i | CAR | COST |
---|---|---|
1 | CAR1 | $10 |
2 | CAR2 | $10 |
3 | CAR3 | $10 |
Six customers are interested in renting a car.
j | CUSTOMER | M | T | W | R | F | S |
---|---|---|---|---|---|---|---|
1 | ABBY | 1 | 1 | 0 | 0 | 0 | 0 |
2 | AL | 0 | 0 | 1 | 1 | 1 | 1 |
3 | BARB | 1 | 1 | 1 | 1 | 1 | 0 |
4 | BRUCE | 0 | 1 | 1 | 1 | 0 | 0 |
5 | CARL | 1 | 1 | 1 | 0 | 0 | 0 |
6 | CINDY | 0 | 0 | 0 | 1 | 1 | 1 |
We need to rethink this constraint because I am not the best Lingo Modeler…
\( \sum\limits_{j\space \in \space J_t} x_{ij} \leq 1 \space\space \space i = 1, ... , m, \space\space \space t = 1, ..., H \)
j | CUSTOMER | M |
---|---|---|
3 | BARB | 1 |
4 | BRUCE | 0 |
LINGO:
SETS:
CAR: COST;
CUSTOMER: M, T, W, R, F, S;
DV (CAR, CUSTOMER): X;
ENDSETS
LINGO:
DATA: CAR COST= CAR1 10 CAR2 10 CAR3 10; CUSTOMER M T W R F S= ABBY 1 1 0 0 0 0 AL 0 0 1 1 1 1 BARB 1 1 1 1 1 0 BRUCE 0 1 1 1 0 0 CARL 1 1 1 0 0 0 CINDY 0 0 0 1 1 1; ENDDATA
Model:
\( max \sum\limits_{i = 1}^{m} \sum\limits_{j = 1}^{n} \space w_{ij} x_{ij} \)
LINGO:
MAX = @SUM(CAR( I): @SUM(CUSTOMER( J): !Days customer J needs a car; (M( J) + T( J) + W( J) + R( J) + F( J) + S( J))* !Cost of renting car I per day; COST( I) * !Decision to rent car J to cutomer I; X( I, J)));
Model:
\( \sum\limits_{i\space= \space 1}^{m} x_{ij} \leq 1 \space\space \space \space j = 1, ... , n \)
LINGO:
!Constraint for each customer; @FOR(CUSTOMER( J): !Each customer gets at most one car; @SUM(CAR( I): X( I,J)) <= 1);
Model:
\( \sum\limits_{j\space \in \space J_t} x_{ij} \leq 1 \space\space \space i = 1, ... , m, \space\space \space t = 1, ..., H \)
LINGO:
!Constraint for each car; @FOR(CAR( I): !Each car has at most one customer on Monday; @SUM(CUSTOMER( J): M( J)*X( I, J)) <= 1);
!Constraint for each car; @FOR(CAR( I): !Each car has at most one customer on Tuesday; @SUM(CUSTOMER( J): T( J)*X( I, J)) <= 1);
...
Model:
\( x_{ij} \in \{0, 1\} \)
LINGO:
!Each Car; @FOR(CAR( I): !Each Customer @FOR(CUSTOMER( J): !The decision variables need to be binary; @BIN(X( I,J))));
CUST | M | T | W | R | F | S |
---|---|---|---|---|---|---|
ABBY | 1 | 1 | 0 | 0 | 0 | 0 |
AL | 0 | 0 | 1 | 1 | 1 | 1 |
BARB | 1 | 1 | 1 | 1 | 1 | 0 |
BRUCE | 0 | 1 | 1 | 1 | 0 | 0 |
CARL | 1 | 1 | 1 | 0 | 0 | 0 |
CINDY | 0 | 0 | 0 | 1 | 1 | 1 |
DV | Value |
---|---|
X( CAR1, BARB) | 1 |
X( CAR2, ABBY) | 1 |
X( CAR2, AL) | 1 |
X( CAR3, CARL) | 1 |
X( CAR3, CINDY) | 1 |
Objective value: 170
Solution: reject Bruce's reservation, accept all others
Need to augment the data to show the solution procedure.
DATA: CAR COST= CAR1 10 CAR2 10 CAR3 10 CAR4 10 CAR5 10 CAR6 10 CAR7 10 CAR8 10 CAR9 10 CAR10 10 CAR11 10 CAR12 10 CAR13 10 CAR14 10 CAR15 10;
CUSTOMER M T W R F S= ABBY 1 1 0 0 0 0 AL 0 0 1 1 1 1 BARB 1 1 1 1 1 0 BRUCE 0 1 1 1 0 0 CARL 1 1 1 0 0 0 CINDY 0 0 0 1 1 1 DAN 1 1 0 0 0 0 DEB 1 0 1 0 0 0 FRAN 1 0 0 1 0 0 FRANK 1 0 0 0 1 0 JILL 1 0 0 0 0 1 JIM 0 1 1 0 0 0 LEON 0 1 0 1 0 0 LINDA 0 1 0 0 1 0 MARK 0 1 0 0 0 1 MARY 0 0 1 1 0 0 NICK 0 0 1 0 1 0 NINA 0 0 1 0 0 1 PAM 0 0 0 1 1 0 PETE 0 0 0 1 0 1 RANDY 0 0 0 0 1 1 RITA 1 1 1 0 0 0 SAM 1 1 0 1 0 0 SARAH 1 1 0 0 1 0 TIM 1 1 0 0 0 1 TINA 1 0 1 1 0 0 VERNA 1 0 1 0 1 0 VIC 0 1 0 1 0 1;
SETS: CAR: COST; CUSTOMER: M, T, W, R, F, S; DV (CAR, CUSTOMER): X; ENDSETS DATA: CAR COST= CAR1 10 CAR2 10 CAR3 10; CUSTOMER M T W R F S= ABBY 1 1 0 0 0 0 AL 0 0 1 1 1 1 BARB 1 1 1 1 1 0 BRUCE 0 1 1 1 0 0 CARL 1 1 1 0 0 0 CINDY 0 0 0 1 1 1; ENDDATA
MAX = @SUM(CAR( I): @SUM(CUSTOMER( J): !Days customer J needs a car; (M( J) + T( J) + W( J) + R( J) + F( J) + S( J))* !Cost of renting car I per day; COST( I) * !Decision to rent car J to cutomer I; X( I, J))); !Each customer gets at most one car; @FOR(CUSTOMER( J): @SUM(CAR( I): X( I,J)) <= 1); !Each car has at most one customer on Monday; @FOR(CAR( I): @SUM(CUSTOMER( J): M( J)*X( I, J)) <= 1); !Each car has at most one customer on Tuesday; @FOR(CAR( I): @SUM(CUSTOMER( J): T( J)*X( I, J)) <= 1);
!Each car has at most one customer on Wednesday; @FOR(CAR( I): @SUM(CUSTOMER( J): W( J)*X( I, J)) <= 1); !Each car has at most one customer on Thursday; @FOR(CAR( I): @SUM(CUSTOMER( J): R( J)*X( I, J)) <= 1); !Each car has at most one customer on Friday; @FOR(CAR( I): @SUM(CUSTOMER( J): F( J)*X( I, J)) <= 1); !Each car has at most one customer on Saturday; @FOR(CAR( I): @SUM(CUSTOMER( J): S( J)*X( I, J)) <= 1); !Binary variable for each car customer combination @FOR(CAR( I): @FOR(CUSTOMER( J): @BIN(X( I,J))));