What
- A pre-processing technique for instance-based classification
- Only "necessary" instances are maintained
Why
- Memory
- Prediction time
How
- Filters
- Wrappers
- An evolutionary algorithm with an arbitrary stopping criterion
September 06, 2016
What
Why
How
Retain only the instances "necessary" to achieve adequate classification rates
Formulation:
Effect:
Formulation:
Effect:
Using 3-NN:
Size | Method | Accuracy | Reduction | Time |
---|---|---|---|---|
Small | CHC_10K | 77.3 | 91.1 | 119 |
Small | CHC_0 | 77.3 | 90.6 | 64 |
Medium | CHC_10K | 75.4 | 90.9 | 1631 |
Medium | CHC_0 | 75.6 | 90.8 | 1415 |
Size | Method | Accuracy | Reduction | Time |
---|---|---|---|---|
Small | 3-NN | 78.6 | NA | NA |
Small | DROP3 | 76.1 | 90.7 | 1 |
Small | CHC_0 | 77.3 | 90.6 | 64 |
Medium | 3-NN | 78.7 | NA | NA |
Medium | DROP3 | 73.7 | 92.8 | 17 |
Medium | CHC_0 | 75.6 | 90.8 | 1415 |
Walter Bennette
walter.bennette.1@us.af.mil
wdbennette@gmail.com
Cano, J.R., F. Herrera, and M. Lozano. 2003. “Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study.” IEEE Transactions on Evolutionary Computation 7 (6): 561–75.
García, Salvador, Julian Luengo, and Francisco Herrera. 2015. Data Preprocessing in Data Mining. Vol. 72. Intelligent Systems Reference Library. Cham: Springer International Publishing. http://link.springer.com/10.1007/978-3-319-10247-4 http://www.scopus.com/inward/record.url?eid=2-s2.0-84906871736{\&}partnerID=tZOtx3y1.