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Abstract Instance based classifiers, such as k-Nearest Neighbors, predict the class
value of a new observation based on some distance or similarity measure between
the new instance and the stored training data. However, due to the required distance
calculations, classifying new instances becomes computationally expensive as the
number of training observations increases. Therefore, instance selection techniques
have been proposed to improve instance based classifiers by reducing the number
of training instances that must be stored to achieve adequate classification rates. Al-
though other methods exist, an evolutionary algorithm has been used for instance
selection with some of the best results in regard to data reduction and preserva-
tion of classification accuracy. Unfortunately, the performance of the evolutionary
algorithm for instance selection comes at the cost of longer computation times in
comparison to classic instance selection techniques. In this work we introduce a
new stopping criterion for the evolutionary algorithm which depends on the conver-
gence of its fitness function. Experimentation shows that the new criterion results in
less computation time while achieving comparable performance.

1 Introduction

Classification is a supervised machine learning task where labeled training data is
used to predict the class value of previously unlabeled instances (data points) based
on observed attribute values. Instance based classifiers, such as k-Nearest Neigh-
bors (kNN), predict the class value of a new observation based on some distance
or similarity measure between the new instance and the stored training data [1, 6].

Walter D. Bennette
The United States Air Force, 525 Brooks Road Rome NY 13441, e-mail: wal-
ter.bennette.1@us.af.mi
DISTRIBUTION A: Approved for public release: distribution unlimited: 02 May 2016. Case #
88ABW-2016-2258l

1



2 Walter D. Bennette

However, due to the required distance calculations, classifying new instances be-
comes computationally expensive as the number of training observations increases.
Therefore, Instance Selection (IS) techniques have been proposed to improve in-
stance based classifiers by reducing the number of training instances that must be
stored to achieve adequate classification rates [14].

The objective of IS is to find a reduced set of instances to include in an instance-
based classifier’s training dataset without sacrificing predictive accuracy. Although
other methods exist, evolutionary Algorithms (EA) have been used for IS with some
of the best results in regard to data reduction and preservation of classification accu-
racy [14]. Unfortunately, the performance of EAs for IS comes at the cost of longer
computation times in comparison to classic IS techniques [4]. Additionally, evo-
lutionary IS exhibits prohibitive computational time and slow convergence when
applied to large datasets [4, 5, 3, 7, 14]. Although approaches exist to scale IS to
large datasets [3, 7, 8], we believe improving the de facto evolutionary IS algorithm
can contribute to the mitigation of these issues.

The de facto evolutionary IS algorithm was established in a 2003 study by Cano
et al [4]. In this study four representative EA models were compared and it was
determined that the Cross generational elitist selection, Heterogeneour recombina-
tion and Cataclysmic mutation (CHC) [10] EA was the best for IS in regard to data
reduction, classification accuracy, and computation time (amongst other EAs) [4].
This study is oft cited to motivate the use of CHC for IS. However, the stopping
criterion used for CHC in these studies is a set number of generations, and as shown
in Table 1, mostly the same as the original 2003 study. We argue that 1) the number
of generations used by most studies is too large, as in practice the fitness function
plateaus much earlier than the prescribed 10,000 generations, and that 2) a stop-
ping criterion that looks at the convergence of the fitness function, as discussed in
[21], can be used to reduce the computational burden of applying CHC to a dataset.
Such an approach is justified as it is apparent from a search of the literature that no
study has been conducted to find an appropriate number of generations for termi-
nation, and preliminary results indicate that the required number of generations is
dependent on the dataset (this can also be seen from an inspection of Figure 1).

Reference Date Generations Population

[4] 2003 10,000 50
[11] 2006 10,000 50
[5] 2006 10,000 50
[3] 2007 10,000 50
[7] 2009 100 100
[13] 2009 10,000 50
[8] 2012 1,000 100
[12] 2012 10,000 50
[16] 2013 Unknown Unknown
[19] 2013 1,000 & 100 50
[14] 2015 10,000 50

Table 1 Parameters from studies that use CHC for IS.
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The remainder of this paper is organized as follows: the Background section
provides relevant information about IS and the formulation of IS for CHC; the New
Stopping Criterion section motivates and introduces the new stopping criterion; in
the Experimental Study section our new stopping criterion is applied to experimental
datasets; and finally, the Conclusion summarizes the effort and provides avenues for
future work.

2 Background

In the following subsections we will introduce IS and the CHC algorithm.

2.1 Instance Selection

The process of IS is utilized for instance based classifiers, such as kNN, because
faster classifications can be made by maintaining only certain necessary instances
in the classifier’s training dataset [17, 20, 24]. That is, because instance based clas-
sifiers perform distance calculations for each instance of a dataset every time a new
classification is to be made, a smaller dataset requires a fewer number of overall
calculations. It has also been observed that IS not only reduces dataset size, but can
improve dataset quality by removing outliers, noise, or instances with contradictory
class values [18, 22, 26].

One of the earliest IS methods was Condensed Nearest Neighbors (CNN), intro-
duced by Hart in 1968 [17]. CNN operates by iteratively building a subset of the
training data such that all instances of the original training data are still correctly
classified by the reduced set. Edited Nearest Neighbors [24] closely followed CNN
as a more selective technique that removes instances that do not have a class value
that agrees with their k-nearest neighbors. Both techniques tend to improve clas-
sification accuracy by removing border instances and making decision boundaries
easier to find, but add relatively little value for data reduction.

Alternatively, DROP3 boasts higher data reduction rates while maintaining ac-
ceptable levels of classification accuracy [25]. This method requires a greater num-
ber of calculations and determines a selection by comparing the classification accu-
racy of specific neighborhoods with and without the presence of different training
instances. Finally, the CHC EA typically achieves the best data reduction and clas-
sification accuracy, but does so with the greatest computational expense [14]. CHC
will be discussed in greater detail in the following subsection.

One disadvantage of all IS methods is very long (or prohibitive) run times for
large datasets [14]. Scaling approaches have been suggested to mitigate this issue,
and the majority involve performing IS on several independent or nearly indepen-
dent subsamples of the original data [3, 7, 8]. Such approaches scale IS by reducing
the amount of data, and therefore the number of distance calculations, that the indi-
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vidual IS methods must consider. This reduces the total number of required opera-
tions.

In depth reviews of IS can be found in [14] and [15].

2.2 CHC Evolutionary Algorithm

As defined in [4], given a training set, T R, with m instances, IS can be represented by
an evolutionary algorithm such that an individual chromosome represents a subset,
S, of T R. Each of a chromosome’s m binomial genes corresponds to an instance
from T R and holds the value one if it is to be included in S and zero if it is not. The
fitness function is then a combination of the classification accuracy and the percent
reduction of instances between S and T R,

Fitness(S) = a ⇤ clasAccuracy+(1�a)⇤ percReduction.

In this work we use the 3-NN classifier to calculate the classification accuracy,
clasAccuracy, of S. Specifically we let clasAccuracy represent the percentage of
instances correctly labeled in T R when using S to find the nearest neighbor. Percent
reduction, perReduction, is calculated as,

perReduction = 100⇤ |T R|� |S|
|T R| .

In the Experimental Study section we use a = 0.5, as is standard across the litera-
ture.

First described in [4] for IS, each generation of CHC utilizes the following steps.

1. A parent population of N individuals is randomly paired to produce a child pop-
ulation of N individuals. N is generally arbitrarily chosen to be 50 or 100.

2. A survival competition is held and the N individuals from the parent and off-
spring populations with the highest fitness function value are selected to create
the next generation.

Members of the child population are generated using heterogeneous recombina-
tion, HUX. HUX operates by exchanging half of the bits that are different between
the parent chromosomes, where the bits chosen to be swapped are randomly se-
lected. Also, the hamming distance between two chromosomes is calculated before
applying HUX, and only parents that differ by a certain threshold are crossed. This
serves as a form of incest prevention. To begin, the crossing threshold is set at L/4,
where L is the length of the chromosomes. The crossing threshold is reduced by one
if no child is introduced into the population at the end of step two.

Note that mutation is not applied during the generation of children. Instead, when
the population begins to stagnate, as noted by the crossing threshold dropping to
zero, a cataclysmic re-population occurs to inject diversity into the search. A cata-
clysmic re-population is realized by removing all chromosomes from the population
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except the chromosome with the highest fitness value. The best chromosome is then
used to generate N �1 new members of the population by randomly changing 35%
of its bits. The search continues after a cataclysmic re-population.

The stopping criterion used by Cano et al. for the CHC algorithm is to simply
terminate the procedure after 10,000 generations. Although heavily adopted, this
criterion is seemingly arbitrarily chosen. We will show in the next section that this
stopping criterion can result in more generations than required to achieve an accept-
able solution.

3 New Stopping Criterion

Rather than terminating CHC after 10,000 generations, we propose a criterion that
looks at the convergence of the CHC fitness function. Specifically, after each cata-
clysmic re-population we calculate the difference in fitness of the best chromosome
from the last cataclysmic re-population and the fitness of the best chromosome from
the current cataclysmic re-population. That is, we measure how much the fitness
function has increased during the generations between cataclysmic re-populations.
If this change is less than or equal to some threshold, G, CHC is terminated. This
way we are using feedback from the dataset and the search itself to terminate; not
an arbitrarily chosen value.

To help determine an appropriate value of G, CHC is applied to the five tuning
datasets described in Table 2. For each dataset we record where CHC would termi-
nate for G 2 {1.0,0.75,0.5,0.25,0.0}, the result of which can be seen in Figure 1
and Figure 2. Figure 1 shows that regardless of the chosen G, 10,000 generations far
exceeds where the fitness function plateaus for the small datasets. Figure 2 shows
the opposite in that 10,000 generations is far before the fitness function plateaus for
the medium, “Pageblocks” dataset.

Dataset Attributes Instances Classes

Mamographic 5 961 2
Monk-2 6 432 2
Pageblocks 10 5404 10
Spectfheart 44 267 2
Wisconsin 9 699 2

Table 2 Tuning datasets for determining the threshold, G, of the proposed stopping criterion.

It has been noted that CHC could have difficulty converging for large datasets
[4, 5, 3, 7, 14], and Figure 2 supports this claim as it takes over 60,000 generations
for CHC to terminate when G = 0.0. To alleviate convergence and computational
difficulties from large datasets, most authors recommend a scaling approach. There-
fore we performed the stratified approach from [4] and recorded the evolution of
each fold. Briefly stated the stratified approach from [4] splits the data into inde-
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Fig. 1 Fitness of CHC for test datasets by generation.

Fig. 2 Fitness of CHC for the Pageblocks dataset by generation.

pendent but roughly equally sized subsets, called folds, and applies the IS algorithm
separately to each fold. Figure 3 shows that if CHC is applied in this manner then
the fitness function plateaus well before 10,000 generations.

Given the observations in this section it is clear that 10,000 generations is an
arbitrarily chosen stopping criterion. Additionally, a termination criterion that ob-
serves the convergence of the fitness function can identify promising stopping areas.
In the following section we perform comparative experiments for 51 datasets where
we compare the 3-NN classifier before and after IS to show the benefits of this new
stopping criterion.
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Fig. 3 Fitness of CHC for folds of the Pageblocks dataset by generation.

4 Experimental Study

In this section we perform comparative experiments for the datasets described in
Table 5 (included at the end of the paper). All datasets in this paper are publicly
available as is source code for the CHC and DROP3 IS algorithm [2] (granted with-
out the modification for our stopping criterion). In the following subsections we
introduce our experimental design and then an analysis of the results.

4.1 Experimental Design

To show the benefits of our stopping criterion we perform CHC on each dataset
in Table 5 for the 3-NN classifier. CHC with our stopping criterion is terminated
as described in Section 3 with G = 0.0, and called CHC 0. CHC with the 10,000
generation stopping criterion is called CHC 10K. Also computed for each dataset is
DROP3, with k = 3, and the 3-NN classifier without IS. Predictive accuracy, dataset
reduction, and computation times are estimated with 10-fold cross validation, where
CHC 0, CHC 10K, DROP3, and 3-NN are applied to the same folds. Here predic-
tive accuracy is taken as the average percentage of instances correctly labeled by
the classifier for the withheld fold of the cross validation procedure. Additionally,
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CHC 10K and CHC 0 are applied to each fold three times with the results aver-
aged for each fold (a total of 30 for each dataset). Finally, CHC 0, CHC 10K, and
DROP3 are applied to the medium datasets using the stratified scaling method de-
scribed in Section 3 and [4]. The number of folds for the stratified approach (not to
be confused with the 10-fold cross validation procedure) is chosen as:

Folds = max
⇢

2,
�
|T R|
750

⌫�

The three hypotheses listed below are tested using the Wilcoxon Signed Ranked
test [9], with visualizations and additional analysis generated after the statistical
tests. Also, hypothesis testing is done separately for small and medium datasets
because of the applied scaling procedure.

1. The predictive accuracy obtained as a result of CHC 0 is equivalent to CHC 10K.
H0 : Predictive Accuracy CHC 10K �Predictive Accuracy CHC 0 = 0

2. The dataset reduction obtained as a result of CHC 0 is equivalent to CHC 10K.
H0 : Reduction CHC 10K �Reduction CHC 0 = 0

3. The computation time (in seconds) of CHC 0 is equivalent to CHC 10K.
H0 : Time CHC 10K �Time CHC 0 = 0

Experiments were executed with a 12 core machine possessing Dual Intel X5650
processors. Results were analyzed using the statistical programming language R and
visualizations were generated using the R package ggplot2 [23].

4.2 Experimental Results

In this section we want to compare the performance of CHC 10K to CHC 0. Refer-
ence points from the DROP3 and the original 3-NN classifier are included to show
the relative performance of CHC to other established methods.

Dataset Size Hypothesis Reject H0 P-value

Small 1 No 1.0
Small 2 Yes 0.0
Small 3 Yes 0.0
Medium 1 No 0.1
Medium 2 Yes 0.0
Medium 3 Yes 0.0

Table 3 Results of Wilcoxon Signed Rank test.
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Dataset Size Method Accuracy Reduction Time (S)

Small 3-NN 78.6 None None
Small CHC 10K 77.3 91.1 119
Small CHC 0 77.3 90.6 64
Small DROP3 76.1 90.7 1
Medium 3-NN 78.7 None None
Medium CHC 10K 75.4 90.9 1631
Medium CHC 0 75.6 90.8 1415
Medium DROP3 73.7 92.8 17

Table 4 Average accuracy, percent reduction of training dataset, and computation time of the IS
method separated by classification method and dataset size, as estimated with 10-fold cross vali-
dation.

When considering predictive accuracy, Table 3, Hypothesis 1, shows that the
CHC 10K and CHC 0 methods are not significantly different at the p = 0.05 level.
However, in comparison to the original 3-NN classifier, Table 4 shows that the CHC
methods decrease predictive accuracy on average. Still, it is observed that the av-
erage reduction in accuracy by CHC is not as great as with the DROP3 method.
Additionally, Figure 4 shows there are times when CHC actually improves predic-
tive accuracy, as with the Australian and Haberman datasets.

In regard to reduction, Table 3, Hypothesis 2, shows that CHC 10K leads to
significantly better reduction than CHC 0. Still, the difference is less than a half
percentage point on average. Surprisingly, DROP3 performs very well when only
considering reduction, but it does sacrifice more predictive accuracy than the CHC
methods. Figure 5 shows a dataset by dataset comparison of the two CHC meth-
ods and it is easy to see that in the majority of cases the reduction of CHC 0 is
only slightly less than that of CHC 10K. Regardless, if the difference in reduction
between CHC 10K and CHC 0 is too large, it is possible to further adapt the new
stopping criterion to allow additional searching, or perhaps establish a termination
criterion based on a reduction target.

Finally, Table 3, Hypothesis 3, shows that CHC 10K takes significantly more
time to complete than CHC 0. Figure 6 shows the dataset by dataset comparison,
and it can be seen that the new stopping criterion can greatly reduce the required
computation time of IS. However, an interesting observation can be made when
viewing the Chess and Splice datasets. The CHC 0 method actually took longer.
For these datasets we can see that CHC 10K terminates too early because CHC 0
achieves both greater reduction and better predictive accuracy. Notably, Table 4
shows that DROP3 is a very fast method in comparison to CHC. We feel practition-
ers should weigh the importance of time required to perform IS and their required
end performance when selecting an IS method.
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Fig. 4 Predictive accuracy of all datasets. Note that sometimes IS can be beneficial, other times
detrimental. Users should weigh reduction/accuracy trade-offs for their specific applications.

Fig. 5 Dataset reduction of all datasets.

Fig. 6 Execution time of IS for all datasets.
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5 Conclusion

In this work we proposed a new stopping criterion for the CHC Instance Selection
algorithm. It was shown that the previous stopping criterion of 10,000 generations
was too large for small datasets, and insufficient for medium datasets. Instead we
proposed a criterion that terminates based on the convergence of the fitness function.
Specifically, we terminate CHC if the fitness function is not markedly improved after
a cataclysmic re-population in comparison to the previous cataclysmic re-population
phase.

Experimental results for 51 datasets showed that our stopping criterion achieves
similar accuracy to the old criterion, but with slightly less dataset reduction. On
average, the new criterion results in 0.3 percentage points more data being selected.
In regard to computation time, the new termination criterion reduces computation
time on average by 55 seconds for small datasets, and by 216 seconds on average for
medium datasets. This improvement, incorporated with scaling measures, will allow
CHC to be more practically applied to large datasets. The result of which is greatly
reduced storage requirements and classification times for instance based classifiers
while maintaining acceptable classification accuracy.

Although experimental results show that our new stopping criterion can result in
less reduction, it highlights the greater need for a stopping criterion that is based
on the evolution of the solution.. For example, with the Splice dataset the new cri-
terion took longer to terminate than the original method, but greater reduction and
increased accuracy was achieved. Alternatively, for the Chess dataset, the original
method took longer to complete, but little (if any) benefit is seen in reduction or
accuracy. Our method is one possible stopping criterion, but others could be derived
for any particular objective.

Future work should consider additional stopping criteria for the CHC Instance
Selection algorithm, such as, a threshold that terminates the search when a certain
level of reduction is achieved. Also, an investigation into the trade-offs between
dataset reduction and predictive accuracy should be conducted. Practitioners will
likely want to determine apriori at what rate predictive accuracy is harmed by per-
forming IS for a dataset.
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Dataset Instances Attributes Classes

Small

Australian 690 14 2
Autos 205 25 6
Balance 625 4 3
Bands 538 19 2
Breast 286 8 2
Bupa 345 6 2
Cleveland 303 13 5
Crx 690 15 2
Dermatology 366 34 6
Ecoli 335 7 8
German 1000 20 2
Glass 214 9 6
Haberman 306 3 2
Hayes 160 4 3
Heart 270 13 2
Hepatitis 155 19 2
Housevotes 435 16 2
Iris 150 4 2
Led7digit 500 7 10
Lymphography 148 18 4
Newthyroid 215 5 3
Pima 768 8 2
Saheart 462 9 2
Sonar 208 60 2
Tae 151 5 3
Tic-tac-toe 958 9 2
Vehicle 846 18 4
Vowel 990 13 2
Wine 178 13 3
Zoo 101 16 7

Medium

Abalone 4174 8 28
Banana 5300 2 2
Car 1728 6 4
Chess 3196 36 2
Coil2000 9822 85 2
Contraceptive 1473 9 3
Flare-solar 1066 11 6
Marketing 8993 13 9
Nursery 12960 8 5
Pendigits 10992 16 2
Ring 7400 20 2
Phoneme 5404 5 2
Satimage 6435 36 6
Segment 2310 19 7
Spambase 4597 57 2
Splice 3190 60 3
Texture 5500 40 11
Thyroid 7200 21 3
Titanic 2201 3 2
Twonorm 7400 20 2
Yeast 1484 8 10

Table 5 Experimental datasets, where “Small” datasets are those with 1,000 or fewer instances.
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